Bidirectional Conservative–Dissipative Transitions in a Five-Dimensional Fractional Chaotic System
This study investigates a modified five-dimensional chaotic system by incorporating structural term adjustments and Caputo fractional-order differential operators. The modified system exhibits significantly enriched dynamic behaviors, including offset boosting, phase trajectory rotation, phase traje...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/15/2477 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates a modified five-dimensional chaotic system by incorporating structural term adjustments and Caputo fractional-order differential operators. The modified system exhibits significantly enriched dynamic behaviors, including offset boosting, phase trajectory rotation, phase trajectory reversal, and contraction phenomena. Additionally, the system exhibits bidirectional transitions—conservative-to-dissipative transitions governed by initial conditions and dissipative-to-conservative transitions controlled by fractional order variations—along with a unique chaotic-to-quasiperiodic transition observed exclusively at low fractional orders. To validate the system’s physical realizability, a signal processing platform based on Digital Signal Processing (DSP) is implemented. Experimental measurements closely align with numerical simulations, confirming the system’s feasibility for practical applications. |
|---|---|
| ISSN: | 2227-7390 |