Rapid Identification of Pork Adulterated in the Beef and Mutton by Infrared Spectroscopy

Consumers concern about food adulteration. Pork meat is the principal adulterated species of beef and mutton. The conventional detection methods have their own limitations; therefore, we sought to develop an efficient and economical identification method using an infrared spectroscopy technique for...

Full description

Saved in:
Bibliographic Details
Main Authors: Ling Yang, Ting Wu, Yun Liu, Juan Zou, Yunmao Huang, Sarath Babu V., Li Lin
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2018/2413874
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Consumers concern about food adulteration. Pork meat is the principal adulterated species of beef and mutton. The conventional detection methods have their own limitations; therefore, we sought to develop an efficient and economical identification method using an infrared spectroscopy technique for meat. The Mahalanobis distance method was used to remove outliers in spectrum data. Interferences were eliminated using multiple scatter correction, standard normal variate, Savitzky-Golay smoothing, and normalization. The partial least square discriminant analysis (PLS-DA) and support vector machine (SVM) were used to establish identification models. In the Mahalanobis distance method, the coefficient of test sets was increased from 0.93 to 0.99; the RMSEC and RMSECV were decreased from 0.17 to 0.09 and 0.21 to 0.11 accordingly. The coefficient of determination in-between the calibration and testing sets in PLS-DA reached 0.99 and 0.99, RMSEC was 0.06, and both the RMSECV and RMSEP were 0.08. In contrast, in SVM, methods were 0.97 and 0.96. The RMSEC, RMSECV, and RMSEP were 0.15, 0.17, and 0.24, respectively. In summary, using a combination of infrared spectroscopy technology with PLS-DA was a better identification method than the SVM method that can be used as an effective method to identify pork, beef, and mutton meat samples.
ISSN:2314-4920
2314-4939