Hexosamine biosynthesis disruption impairs GPI production and arrests Plasmodium falciparum growth at schizont stages.

UDP-N-acetylglucosamine (UDP-GlcNAc) is a crucial sugar nucleotide for glycan synthesis in eukaryotes. In the malaria parasite Plasmodium falciparum, UDP-GlcNAc is synthesized via the hexosamine biosynthetic pathway (HBP) and is essential for glycosylphosphatidylinositol (GPI) anchor production, the...

Full description

Saved in:
Bibliographic Details
Main Authors: María Pía Alberione, Yunuen Avalos-Padilla, Gabriel W Rangel, Miriam Ramírez, Tais Romero-Uruñuela, Àngel Fenollar, Jonathan Ortega-Barrionuevo, Marcell Crispim, Terry K Smith, Manuel Llinás, Luis Izquierdo
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-07-01
Series:PLoS Pathogens
Online Access:https://doi.org/10.1371/journal.ppat.1012832
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:UDP-N-acetylglucosamine (UDP-GlcNAc) is a crucial sugar nucleotide for glycan synthesis in eukaryotes. In the malaria parasite Plasmodium falciparum, UDP-GlcNAc is synthesized via the hexosamine biosynthetic pathway (HBP) and is essential for glycosylphosphatidylinositol (GPI) anchor production, the most prominent form of protein glycosylation in the parasite. In this study, we explore a conditional knockout of glucosamine-6-phosphate N-acetyltransferase (PfGNA1), a key HBP enzyme. PfGNA1 depletion led to significant disruptions in HBP metabolites, impairing GPI biosynthesis and causing mislocalization of the merozoite surface protein 1 (MSP1), the most abundant GPI-anchored protein in the parasite. Furthermore, parasites were arrested at the schizont stage, exhibiting severe segmentation defects and an incomplete rupture of the parasitophorous vacuole membrane (PVM), preventing egress from host red blood cells. Our findings demonstrate the critical role of HBP and GPI biosynthesis in P. falciparum asexual blood stage development and underscore the potential of targeting these pathways as a therapeutic strategy against malaria.
ISSN:1553-7366
1553-7374