Material Properties of Laser-Welded Thin Silicon Foils

An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar c...

Full description

Saved in:
Bibliographic Details
Main Authors: M. T. Hessmann, T. Kunz, M. Voigt, K. Cvecek, M. Schmidt, A. Bochmann, S. Christiansen, R. Auer, C. J. Brabec
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2013/724502
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850216353628160000
author M. T. Hessmann
T. Kunz
M. Voigt
K. Cvecek
M. Schmidt
A. Bochmann
S. Christiansen
R. Auer
C. J. Brabec
author_facet M. T. Hessmann
T. Kunz
M. Voigt
K. Cvecek
M. Schmidt
A. Bochmann
S. Christiansen
R. Auer
C. J. Brabec
author_sort M. T. Hessmann
collection DOAJ
description An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1) laser spot welding with low constant feed speed, (2) laser line welding, and (3) keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD) to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.
format Article
id doaj-art-3edf77d8a221419c8da560c8ccd4e621
institution OA Journals
issn 1110-662X
1687-529X
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series International Journal of Photoenergy
spelling doaj-art-3edf77d8a221419c8da560c8ccd4e6212025-08-20T02:08:20ZengWileyInternational Journal of Photoenergy1110-662X1687-529X2013-01-01201310.1155/2013/724502724502Material Properties of Laser-Welded Thin Silicon FoilsM. T. Hessmann0T. Kunz1M. Voigt2K. Cvecek3M. Schmidt4A. Bochmann5S. Christiansen6R. Auer7C. J. Brabec8Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, GermanyBavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, GermanyBavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, GermanyBLZ-Bavarian Laser Center, Konrad-Zuse-Straße 2–6, 91052 Erlangen, GermanyBLZ-Bavarian Laser Center, Konrad-Zuse-Straße 2–6, 91052 Erlangen, GermanyUniversity of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, GermanyMax-Planck-Institute for the Science of Light, Günther-Scharowsky-Straße 1, 91058 Erlangen, GermanyBavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, GermanyBavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, GermanyAn extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1) laser spot welding with low constant feed speed, (2) laser line welding, and (3) keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD) to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.http://dx.doi.org/10.1155/2013/724502
spellingShingle M. T. Hessmann
T. Kunz
M. Voigt
K. Cvecek
M. Schmidt
A. Bochmann
S. Christiansen
R. Auer
C. J. Brabec
Material Properties of Laser-Welded Thin Silicon Foils
International Journal of Photoenergy
title Material Properties of Laser-Welded Thin Silicon Foils
title_full Material Properties of Laser-Welded Thin Silicon Foils
title_fullStr Material Properties of Laser-Welded Thin Silicon Foils
title_full_unstemmed Material Properties of Laser-Welded Thin Silicon Foils
title_short Material Properties of Laser-Welded Thin Silicon Foils
title_sort material properties of laser welded thin silicon foils
url http://dx.doi.org/10.1155/2013/724502
work_keys_str_mv AT mthessmann materialpropertiesoflaserweldedthinsiliconfoils
AT tkunz materialpropertiesoflaserweldedthinsiliconfoils
AT mvoigt materialpropertiesoflaserweldedthinsiliconfoils
AT kcvecek materialpropertiesoflaserweldedthinsiliconfoils
AT mschmidt materialpropertiesoflaserweldedthinsiliconfoils
AT abochmann materialpropertiesoflaserweldedthinsiliconfoils
AT schristiansen materialpropertiesoflaserweldedthinsiliconfoils
AT rauer materialpropertiesoflaserweldedthinsiliconfoils
AT cjbrabec materialpropertiesoflaserweldedthinsiliconfoils