Ultra-Wideband 4-Bit Distributed Phase Shifters Using Lattice Network at <italic>K/Ka</italic>- and <italic>E/W</italic>-Band
In this article, we introduce an ultra-wideband 4-bit distributed phase shifter using a lattice network. To achieve wider bandwidth, the proposed phase shifter employed an all-pass lattice network instead of the traditional low-pass ladder network. Seven cascaded 22.5° lattice phase shift...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of the Solid-State Circuits Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10663470/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we introduce an ultra-wideband 4-bit distributed phase shifter using a lattice network. To achieve wider bandwidth, the proposed phase shifter employed an all-pass lattice network instead of the traditional low-pass ladder network. Seven cascaded 22.5° lattice phase shifters and one switched line 180° phase shifter were used to achieve 360° phase shift range. Based on our theoretical analysis, we designed the lattice network as a constant-phase shifter rather than a delay line. Implementations in the K/Ka- and E/W-bands validate the suitability of the lattice network for constant-phase shifting. Fabricated using 28-nm bulk CMOS technology, the K/Ka-band phase shifter had a size of 0.45 mm2 excluding pads. Within the frequency range of 20.5–35.5 GHz, the root-mean-square (RMS) phase error ranged from 1.6 to 5°, the RMS gain error ranged from 0.3 to 0.6 dB, and the return loss remained above 10 dB. At 28 GHz, the insertion loss was <inline-formula> <tex-math notation="LaTeX">$11.6\pm 0$ </tex-math></inline-formula>.8 dB without dc power consumption. Fabricated using 28-nm FD-SOI technology, the E/W-band phase shifter had a size of 0.3 mm2 excluding pads. Within the frequency range of 63.5–100.5 GHz, the RMS phase error ranged from 2.4 to 4.6°, the RMS gain error ranged from 0.44 to 1 dB, and the return loss remained above 10 dB. At 82 GHz, the insertion loss was <inline-formula> <tex-math notation="LaTeX">$11.9\pm 1$ </tex-math></inline-formula>.1 dB without dc power consumption. The proposed phase shifter demonstrated exceptional performance for multistandard operation, achieving low RMS phase and gain errors across a wide fractional bandwidth of 53.6% and 45.1%, respectively. |
---|---|
ISSN: | 2644-1349 |