Research and Modelling of Bus Marginal Carbon Intensity for Power Systems Considering Network Losses
Network losses and congestion have not been considered in the current macro carbon calculation method and carbon flow analysis method for power systems. To achieve precise analysis of carbon emission indicators for power systems, this paper proposes a model to calculate the bus marginal carbon inten...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
State Grid Energy Research Institute
2024-06-01
|
| Series: | Zhongguo dianli |
| Subjects: | |
| Online Access: | https://www.electricpower.com.cn/CN/10.11930/j.issn.1004-9649.202305075 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Network losses and congestion have not been considered in the current macro carbon calculation method and carbon flow analysis method for power systems. To achieve precise analysis of carbon emission indicators for power systems, this paper proposes a model to calculate the bus marginal carbon intensity (MCI) of power system considering network losses. A MCI model is established based on coal consumption characteristics of thermal power units. Based on AC power flow model, a sensitivity model of network losses is established, and a calculation method is proposed to calculate the bus MCI of power systems. The method is further improved with consideration of network constraints. The IEEE 14-bus test system and a real 500 kV system are used to verify the correctness and applicability of the proposed model. The characteristics of MCI is analyzed under low carbon and non-low carbon dispatch modes. It is found that the positive and negative MCI of a bus is different when considering the network losses. The network factor also causes the differences of MCI of each bus. The model considering network losses can provide more accurate bus MCI information, which can be used to conduct more accurate real-time carbon emission analysis. |
|---|---|
| ISSN: | 1004-9649 |