Type-II intermittency in a class of two coupled one-dimensional maps

The paper shows how intermittency behavior of type-II can arise from the coupling of two one-dimensional maps, each exhibiting type-III intermittency. This change in dynamics occurs through the replacement of a subcritical period-doubling bifurcation in the individual map by a subcritical Hopf bifu...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Laugesen, E. Mosekilde, T. Bountis, S. P. Kuznetsov
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:Discrete Dynamics in Nature and Society
Subjects:
Online Access:http://dx.doi.org/10.1155/S1026022600000558
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper shows how intermittency behavior of type-II can arise from the coupling of two one-dimensional maps, each exhibiting type-III intermittency. This change in dynamics occurs through the replacement of a subcritical period-doubling bifurcation in the individual map by a subcritical Hopf bifurcation in the coupled system. A variety of different parameter combinations are considered, and the statistics for the distribution of laminar phases is worked out. The results comply well with theoretical predictions. Provided that the reinjection process is reasonably uniform in two dimensions, the transition to type-II intermittency leads directly to higher order chaos. Hence, this transition represents a universal route to hyperchaos.
ISSN:1026-0226
1607-887X