Type-II intermittency in a class of two coupled one-dimensional maps
The paper shows how intermittency behavior of type-II can arise from the coupling of two one-dimensional maps, each exhibiting type-III intermittency. This change in dynamics occurs through the replacement of a subcritical period-doubling bifurcation in the individual map by a subcritical Hopf bifu...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2000-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S1026022600000558 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper shows how intermittency behavior of type-II can arise from the coupling of two one-dimensional maps, each exhibiting type-III intermittency. This change in dynamics occurs through the replacement of a subcritical period-doubling bifurcation in
the individual map by a subcritical Hopf bifurcation in the coupled system. A variety of different parameter combinations are considered, and the statistics for the distribution of laminar phases is worked out. The results comply well with theoretical predictions. Provided that the reinjection process is reasonably uniform in two dimensions, the transition to type-II intermittency leads directly to higher order chaos. Hence, this
transition represents a universal route to hyperchaos. |
---|---|
ISSN: | 1026-0226 1607-887X |