A Fast and Efficient Denoising and Surface Reflectance Retrieval Method for ZY1-02D Hyperspectral Data

Hyperspectral remote sensing is crucial due to its continuous spectral information, especially in the quantitative remote sensing (QRS) field. Surface reflectance (SR), a fundamental product in QRS, can play a pivotal role in application accuracy and serves as a key indicator of sensor performance....

Full description

Saved in:
Bibliographic Details
Main Authors: Qiongqiong Lan, Yaqing He, Qijin Han, Yongguang Zhao, Wan Li, Lu Xu, Dongping Ming
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1844
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperspectral remote sensing is crucial due to its continuous spectral information, especially in the quantitative remote sensing (QRS) field. Surface reflectance (SR), a fundamental product in QRS, can play a pivotal role in application accuracy and serves as a key indicator of sensor performance. However, the distinctive spectral characteristics of a hyperspectral image (HSI) make it particularly susceptible to noise during the process of imaging, which inevitably degrades data quality and reduces SR accuracy. Moreover, the validation of hyperspectral SR faces challenges due to the scarcity of reliable validation data. To address these issues, aiming at fast and efficient processing of Chinese domestic ZY1-02D hyperspectral level-1 data, this study proposes a comprehensive processing framework: (1) To address the low efficiency of traditional bad line detection by visual examination, an automatic bad line detection method based on the pixel grayscale gradient threshold algorithm is proposed; (2) A spectral correlation-based interpolation method is developed to overcome the poor performance of adjacent-column averaging in repairing wide bad lines; (3) A reliable validation method was established based on the spectral band adjustment factors method to compare hyperspectral SR with multispectral SR and in-situ ground measurements. The results and analysis demonstrate that the proposed method improves the accuracy of ZY1-02D SR and the method ensures high processing efficiency, requiring only 5 min per scene of ZY1-02D HSI. This study provides a technical foundation for the application of ZY1-02D HSIs and offers valuable insights for the development and enhancement of next-generation hyperspectral sensors.
ISSN:2072-4292