Effect of Superficial Scratch Damage on Tension Properties of Carbon/Epoxy Plain Weave Laminates

The effect of scratch damage on the tension properties of carbon fiber plain weave laminates has been studied in detail using digital image correlation (DIC) and acoustic emission (AE). A range of scratch lengths was machined onto different laminates. The bearing capacity of the laminates was then c...

Full description

Saved in:
Bibliographic Details
Main Authors: Miaomiao Duan, Zhufeng Yue, Qianguang Song
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2021/5590448
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of scratch damage on the tension properties of carbon fiber plain weave laminates has been studied in detail using digital image correlation (DIC) and acoustic emission (AE). A range of scratch lengths was machined onto different laminates. The bearing capacity of the laminates was then compared with that of unaltered samples. The strain field distributions near the scratches were measured and analyzed as a function of scratch length with DIC. Initiation and propagation of damage were monitored during the tensile tests using AE. Failure sites and morphologies were observed and analyzed. The results show that superficial scratches have little effect on the strength of plain weave laminates when the scratch length is less than 80% of the specimen width. Scratches affect the distribution of strain near the scratch but not far away from the scratch or at the back face of the sample. Not all samples broke from the scratch site but instead broke from the free edge of the sample or close to the gripping region.
ISSN:1687-8086
1687-8094