How to think about designing smart antibodies in the age of genAI: integrating biology, technology, and experience
Antibody discovery has been successful in designing and progressing molecules to the clinic and market based on largely empirical methods and human experience. The field is now transitioning from classical monospecific antibodies to innovative smart biologics that employ diverse mechanisms of action...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-12-01
|
| Series: | mAbs |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/19420862.2025.2490790 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Antibody discovery has been successful in designing and progressing molecules to the clinic and market based on largely empirical methods and human experience. The field is now transitioning from classical monospecific antibodies to innovative smart biologics that employ diverse mechanisms of action, such as targeting, antagonism, agonism, and target-independent function. This evolution is being assisted, augmented, and potentially disrupted by artificial intelligence and machine learning (AI/ML) technologies. This perspective is focused on bringing clarity to the strategy and thinking that is required when designing antibody drug candidates and how emerging AI/ML strategies can address the real-world challenges of drug discovery and continue to improve performance. |
|---|---|
| ISSN: | 1942-0862 1942-0870 |