Spherical Steiner Symmetrizations
In this paper, we primarily investigate and establish several properties of spherical Steiner symmetrizations, along with the isoperimetric property of the spherical cap in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/13/11/751 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we primarily investigate and establish several properties of spherical Steiner symmetrizations, along with the isoperimetric property of the spherical cap in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mi>n</mi></msup></semantics></math></inline-formula>. Specifically, we study the monotonically decreasing property of the measure of the symmetric difference of two spherical compact sets, the monotonically decreasing property of the spherical diameter of a spherical compact set, the convergence of iterative spherical Steiner symmetrizations, and so on. In particular, we prove that the sequence of iterative spherical Steiner symmetrizations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>⊂</mo><msup><mi mathvariant="double-struck">S</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula>, which follow sequences selected from a finite set of directions, converges to a spherical cap with the same measure as <i>K</i>, extending the result from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mi>n</mi></msup></semantics></math></inline-formula> on Steiner symmetrizations. It provides us with valuable insights for studying the relevant applications and conclusions of spherical Steiner symmetrizations. |
|---|---|
| ISSN: | 2075-1680 |