Sufficiency for Gaussian hypergeometric functions to be uniformly convex

Let F(a,b;c;z) be the classical hypergeometric function and f be a normalized analytic functions defined on the unit disk 𝒰. Let an operator Ia,b;c(f) be defined by [Ia,b;c(f)](z)=zF(a,b;c;z)*f(z). In this paper the authors identify two subfamilies of analytic functions ℱ1 and ℱ2 and obtain conditio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Chan Kim, S. Ponnusamy
Format: Article
Language:English
Published: Wiley 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171299227652
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850218227856048128
author Yong Chan Kim
S. Ponnusamy
author_facet Yong Chan Kim
S. Ponnusamy
author_sort Yong Chan Kim
collection DOAJ
description Let F(a,b;c;z) be the classical hypergeometric function and f be a normalized analytic functions defined on the unit disk 𝒰. Let an operator Ia,b;c(f) be defined by [Ia,b;c(f)](z)=zF(a,b;c;z)*f(z). In this paper the authors identify two subfamilies of analytic functions ℱ1 and ℱ2 and obtain conditions on the parameters a,b,c such that f∈ℱ1 implies Ia,b;c(f)∈ℱ2.
format Article
id doaj-art-3da8fdbafb344e8ca74b3cc4e37766d4
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1999-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-3da8fdbafb344e8ca74b3cc4e37766d42025-08-20T02:07:49ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122476577310.1155/S0161171299227652Sufficiency for Gaussian hypergeometric functions to be uniformly convexYong Chan Kim0S. Ponnusamy1Department of Mathematics, Yeungnam University, 214-1, Daedong, Gyongsan 712-749, KoreaDepartment of Mathematics, University of Helsinki, P. O. Box 4, Hallitskatu 15, Helsinki FIN-00014, FinlandLet F(a,b;c;z) be the classical hypergeometric function and f be a normalized analytic functions defined on the unit disk 𝒰. Let an operator Ia,b;c(f) be defined by [Ia,b;c(f)](z)=zF(a,b;c;z)*f(z). In this paper the authors identify two subfamilies of analytic functions ℱ1 and ℱ2 and obtain conditions on the parameters a,b,c such that f∈ℱ1 implies Ia,b;c(f)∈ℱ2.http://dx.doi.org/10.1155/S0161171299227652
spellingShingle Yong Chan Kim
S. Ponnusamy
Sufficiency for Gaussian hypergeometric functions to be uniformly convex
International Journal of Mathematics and Mathematical Sciences
title Sufficiency for Gaussian hypergeometric functions to be uniformly convex
title_full Sufficiency for Gaussian hypergeometric functions to be uniformly convex
title_fullStr Sufficiency for Gaussian hypergeometric functions to be uniformly convex
title_full_unstemmed Sufficiency for Gaussian hypergeometric functions to be uniformly convex
title_short Sufficiency for Gaussian hypergeometric functions to be uniformly convex
title_sort sufficiency for gaussian hypergeometric functions to be uniformly convex
url http://dx.doi.org/10.1155/S0161171299227652
work_keys_str_mv AT yongchankim sufficiencyforgaussianhypergeometricfunctionstobeuniformlyconvex
AT sponnusamy sufficiencyforgaussianhypergeometricfunctionstobeuniformlyconvex