Performance Prediction of Building Integrated Photovoltaic System Using Hybrid Deep Learning Algorithm

In a grid-connected photovoltaic system, forecasting is a necessary and critical step. Solar Power is very nonlinear; this article develops and analyses building integrated photovoltaic (BIPV) forecasting algorithms for different timeframes, such as an hour, a day, and a week ahead, to manage grid o...

Full description

Saved in:
Bibliographic Details
Main Authors: Manivannan Ragupathi, Rengaraj Ramasubbu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2022/6111030
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a grid-connected photovoltaic system, forecasting is a necessary and critical step. Solar Power is very nonlinear; this article develops and analyses building integrated photovoltaic (BIPV) forecasting algorithms for different timeframes, such as an hour, a day, and a week ahead, to manage grid operation effectively. However, a model built for a certain time scale may improve performance at that time scale but cannot be utilized to make predictions at other time scales. Here, we demonstrate how to use the multitask learning algorithm to create a multitime scale model for solar BIPV forecasting. Effective resource distribution across several tasks is shown. The suggested multitask learning approach is implemented using LSTM neural networks and evaluated over a range of horizons. We employed a modified version of the Chicken Swarm Optimizer (CSO) that takes the best features of the CSO and the GWO algorithms and merges them into one efficient approach to estimate the hyperparameters of the proposed LSTM model. The proposed approach consistently outperformed state-of-the-art single-timescale forecasting algorithms across all time scales.
ISSN:1687-529X