On the obstacle problem in fractional generalised Orlicz spaces

We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic $ g $-Laplacian $ \mathcal{L}_g^s $, with $ 0 < s < 1 $. We prove the strict T-monotonicity of $ \mathcal{L}_g^s $ and we obtain the Lewy-Stampacchia inequalities $ F\leq\mathcal{L}_g^su\leq F\vee\mathcal...

Full description

Saved in:
Bibliographic Details
Main Authors: Catharine W. K. Lo, José Francisco Rodrigues
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mine.2024026
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590319102722048
author Catharine W. K. Lo
José Francisco Rodrigues
author_facet Catharine W. K. Lo
José Francisco Rodrigues
author_sort Catharine W. K. Lo
collection DOAJ
description We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic $ g $-Laplacian $ \mathcal{L}_g^s $, with $ 0 < s < 1 $. We prove the strict T-monotonicity of $ \mathcal{L}_g^s $ and we obtain the Lewy-Stampacchia inequalities $ F\leq\mathcal{L}_g^su\leq F\vee\mathcal{L}_g^s\psi $ and $ F\wedge\mathcal{L}_g^s\varphi\leq \mathcal{L}_g^su\leq F\vee\mathcal{L}_g^s\psi $, respectively, for the one obstacle solution $ u\geq\psi $ and for the two obstacles solution $ \psi\leq u\leq\varphi $, with given data $ F $. We consider the approximation of the solutions through semilinear problems, for which we prove a global $ L^\infty $-estimate, and we extend the local Hölder regularity to the solutions of the obstacle problems in the case of the fractional $ p(x, y) $-Laplacian operator. We make further remarks on a few elementary properties of related capacities in the fractional generalised Orlicz framework, with a special reference to the Hilbertian nonlinear case in fractional Sobolev spaces.
format Article
id doaj-art-3d15ed0c9eb44235a0a44a1a0ac93ef7
institution Kabale University
issn 2640-3501
language English
publishDate 2024-09-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj-art-3d15ed0c9eb44235a0a44a1a0ac93ef72025-01-24T01:08:20ZengAIMS PressMathematics in Engineering2640-35012024-09-016567670410.3934/mine.2024026On the obstacle problem in fractional generalised Orlicz spacesCatharine W. K. Lo0José Francisco Rodrigues1Department of Mathematics, City University of Hong Kong, Hong Kong, ChinaCMAFcIO – Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa P-1749-016 Lisboa, PortugalWe consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic $ g $-Laplacian $ \mathcal{L}_g^s $, with $ 0 < s < 1 $. We prove the strict T-monotonicity of $ \mathcal{L}_g^s $ and we obtain the Lewy-Stampacchia inequalities $ F\leq\mathcal{L}_g^su\leq F\vee\mathcal{L}_g^s\psi $ and $ F\wedge\mathcal{L}_g^s\varphi\leq \mathcal{L}_g^su\leq F\vee\mathcal{L}_g^s\psi $, respectively, for the one obstacle solution $ u\geq\psi $ and for the two obstacles solution $ \psi\leq u\leq\varphi $, with given data $ F $. We consider the approximation of the solutions through semilinear problems, for which we prove a global $ L^\infty $-estimate, and we extend the local Hölder regularity to the solutions of the obstacle problems in the case of the fractional $ p(x, y) $-Laplacian operator. We make further remarks on a few elementary properties of related capacities in the fractional generalised Orlicz framework, with a special reference to the Hilbertian nonlinear case in fractional Sobolev spaces.https://www.aimspress.com/article/doi/10.3934/mine.2024026fractional generalised orlicz spacesnonlocal nonlinear anisotropic operatorsone and two obstacles problems
spellingShingle Catharine W. K. Lo
José Francisco Rodrigues
On the obstacle problem in fractional generalised Orlicz spaces
Mathematics in Engineering
fractional generalised orlicz spaces
nonlocal nonlinear anisotropic operators
one and two obstacles problems
title On the obstacle problem in fractional generalised Orlicz spaces
title_full On the obstacle problem in fractional generalised Orlicz spaces
title_fullStr On the obstacle problem in fractional generalised Orlicz spaces
title_full_unstemmed On the obstacle problem in fractional generalised Orlicz spaces
title_short On the obstacle problem in fractional generalised Orlicz spaces
title_sort on the obstacle problem in fractional generalised orlicz spaces
topic fractional generalised orlicz spaces
nonlocal nonlinear anisotropic operators
one and two obstacles problems
url https://www.aimspress.com/article/doi/10.3934/mine.2024026
work_keys_str_mv AT catharinewklo ontheobstacleprobleminfractionalgeneralisedorliczspaces
AT josefranciscorodrigues ontheobstacleprobleminfractionalgeneralisedorliczspaces