Cut points in abcohesive, aposyndetic, and semi-locally connected spaces

In 1941, F. B. Jones introduced aposyndesis, which generalizes the concept of semi-local connectedness defined earlier by G. T. Whyburn (1942), in the study of continuum theory. Using Jones's idea, D. A. John (1993) defined abcohesiveness as a generalization of aposyndesis and studied the A-set...

Full description

Saved in:
Bibliographic Details
Main Authors: David A. John, Shing S. So
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202109197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 1941, F. B. Jones introduced aposyndesis, which generalizes the concept of semi-local connectedness defined earlier by G. T. Whyburn (1942), in the study of continuum theory. Using Jones's idea, D. A. John (1993) defined abcohesiveness as a generalization of aposyndesis and studied the A-sets in abcohesive spaces. In this paper, some properties of abcohesive spaces are studied and a number of results by B. Lehman (1976) and Whyburn (1942, 1968) are generalized; sufficient conditions for the existence of two nodal sets are established as well.
ISSN:0161-1712
1687-0425