Experimental Investigation on Thermal and Ignition Characteristics of Direct Current (DC) Series Arc in a Lab-Scale Photovoltaic (PV) System
This study investigates the thermal behavior and ignition dynamics of DC series arcs in a lab-scale photovoltaic (PV) system. The impacts of current magnitude, dynamic current variations, and electrode gap on electrode surface temperatures are analyzed, while ignition characteristics of common elect...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Fire |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2571-6255/8/5/200 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the thermal behavior and ignition dynamics of DC series arcs in a lab-scale photovoltaic (PV) system. The impacts of current magnitude, dynamic current variations, and electrode gap on electrode surface temperatures are analyzed, while ignition characteristics of common electrical materials (PC, PVC, XLPO, PPE, etc.) are investigated by analyzing critical time thresholds during the arc-induced combustion. Results show that electrode surface temperatures rise with increased current or larger electrode gaps, driven by the enhanced DC arc energy release. Dynamic current variations (increasing/decreasing) shift the balance between heat accumulation and dissipation, resulting in the nonlinear temperature evolution. Additionally, the peak temperature of the anode is about 50% higher than that of the cathode due to the electron flow-driven heat transfer and particle collisions. Notably, general electrical materials can be ignited successfully by stable DC arcs. The anode can ignite flame-retardant materials within 3 s, while the cathode takes a relatively long time to ignite, approximately 20 to 30 s. Besides, enlarged electrode gaps can induce a mutual reinforcement between arcs and flames, resulting in further stabilized arcs and intensified flames. This highlights potential elevated fire hazards as the connector gap increases due to the DC arc erosion. |
|---|---|
| ISSN: | 2571-6255 |