Broad-Spectrum Antiviral Activity of Pyridobenzothiazolone Analogues Against Respiratory Viruses
Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-O...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Viruses |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1999-4915/17/7/890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-OC43), and influenza virus type A (IFV-A). We identified a compound with broad-spectrum inhibitory activity against multiple strains of RSV, HCoV, and IFV, with EC<sub>50</sub> values in the low micromolar range and cell-independent activity. Its antiviral activity and cytocompatibility were confirmed in a fully differentiated 3D model of the bronchial epithelium mimicking the in vivo setting. The hit compound enters cells and localizes homogeneously in the cytosol, inhibiting replicative phases in a virus-specific manner. Overall, the selected PBTZ represents a good starting point for further preclinical development as a broad-spectrum antiviral agent that could address the continuous threat of new emerging pathogens and the rising issue of antiviral resistance. |
|---|---|
| ISSN: | 1999-4915 |