Motor Fault Diagnosis Under Strong Background Noise Based on Parameter-Optimized Feature Mode Decomposition and Spatial–Temporal Features Fusion

As the mining motor is used long-term in a complex multi-source noise environment composed of equipment group coordinated operations and high-frequency start–stop, its vibration signal has the features of significant strong noise interference, weak fault features, and the superposition of multiple w...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingcan Wang, Yiping Yuan, Fangqi Shen, Caifeng Chen
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4168
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the mining motor is used long-term in a complex multi-source noise environment composed of equipment group coordinated operations and high-frequency start–stop, its vibration signal has the features of significant strong noise interference, weak fault features, and the superposition of multiple working conditions coupling, which makes it arduous to efficiently extract and identify mechanical fault features. To address this issue, this study introduces a high-performance fault diagnosis approach for mining motors operating under strong background noise by integrating parameter-optimized feature mode decomposition (WOA-FMD) with the RepLKNet-BiGRU-Attention dual-channel model. According to the experimental results, the average accuracies of the proposed method were 97.7% and 93.38% for the noise-added CWRU bearing fault dataset and the actual operation dataset of the mine motor, respectively, which are significantly better than those of similar methods, showing that the approach in this study is superior in fault feature extraction and identification.
ISSN:1424-8220