Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected
Let G be a connected graph with minimum degree δG and vertex-connectivity κG. The graph G is k-connected if κG≥k, maximally connected if κG=δG, and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/5588146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a connected graph with minimum degree δG and vertex-connectivity κG. The graph G is k-connected if κG≥k, maximally connected if κG=δG, and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. Analogous results for triangle-free graphs with given minimum degree to be k-connected, maximally connected, or super-connected are also presented. |
---|---|
ISSN: | 1076-2787 1099-0526 |