Interpolation of Missing Precipitation Data Using Kernel Estimations for Hydrologic Modeling
Precipitation is the main factor that drives hydrologic modeling; therefore, missing precipitation data can cause malfunctions in hydrologic modeling. Although interpolation of missing precipitation data is recognized as an important research topic, only a few methods follow a regression approach. I...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Advances in Meteorology |
Online Access: | http://dx.doi.org/10.1155/2015/935868 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precipitation is the main factor that drives hydrologic modeling; therefore, missing precipitation data can cause malfunctions in hydrologic modeling. Although interpolation of missing precipitation data is recognized as an important research topic, only a few methods follow a regression approach. In this study, daily precipitation data were interpolated using five different kernel functions, namely, Epanechnikov, Quartic, Triweight, Tricube, and Cosine, to estimate missing precipitation data. This study also presents an assessment that compares estimation of missing precipitation data through Kth nearest neighborhood (KNN) regression to the five different kernel estimations and their performance in simulating streamflow using the Soil Water Assessment Tool (SWAT) hydrologic model. The results show that the kernel approaches provide higher quality interpolation of precipitation data compared with the KNN regression approach, in terms of both statistical data assessment and hydrologic modeling performance. |
---|---|
ISSN: | 1687-9309 1687-9317 |