The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited

The complex exponential function exp is a well-known entire function. In this paper, we recall its relation with the definition of the complex power of a complex number, which emanates that the complex power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis M. Sánchez-Ruiz, Matilde Legua, Santiago Moll-López, José A. Moraño-Fernández, María-Dolores Roselló
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/8/1306
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849713340456108032
author Luis M. Sánchez-Ruiz
Matilde Legua
Santiago Moll-López
José A. Moraño-Fernández
María-Dolores Roselló
author_facet Luis M. Sánchez-Ruiz
Matilde Legua
Santiago Moll-López
José A. Moraño-Fernández
María-Dolores Roselló
author_sort Luis M. Sánchez-Ruiz
collection DOAJ
description The complex exponential function exp is a well-known entire function. In this paper, we recall its relation with the definition of the complex power of a complex number, which emanates that the complex power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>e</mi><mi>z</mi></msup></semantics></math></inline-formula> may coincide with it at some complex values. Still, on most occasions, the power represents a much broader spectrum of complex values. We also outsight how the software <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>m</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></semantics></math></inline-formula> may become a valuable tool for evaluating and visualizing complex power functions, in some cases by introducing some specific commands that have not been implemented in the software.
format Article
id doaj-art-3b6479c4a63e4e43a73da108a8afd1e5
institution DOAJ
issn 2227-7390
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-3b6479c4a63e4e43a73da108a8afd1e52025-08-20T03:13:58ZengMDPI AGMathematics2227-73902025-04-01138130610.3390/math13081306The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function RevisitedLuis M. Sánchez-Ruiz0Matilde Legua1Santiago Moll-López2José A. Moraño-Fernández3María-Dolores Roselló4Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, SpainDepartmento de Matemática Aplicada, Universidad de Zaragoza, 50018 Zaragoza, SpainDepartamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, SpainDepartamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, SpainDepartamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, SpainThe complex exponential function exp is a well-known entire function. In this paper, we recall its relation with the definition of the complex power of a complex number, which emanates that the complex power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>e</mi><mi>z</mi></msup></semantics></math></inline-formula> may coincide with it at some complex values. Still, on most occasions, the power represents a much broader spectrum of complex values. We also outsight how the software <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>m</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></semantics></math></inline-formula> may become a valuable tool for evaluating and visualizing complex power functions, in some cases by introducing some specific commands that have not been implemented in the software.https://www.mdpi.com/2227-7390/13/8/1306complex variablecomplex exponentialcomplex logarithmcomplex power of a complex number
spellingShingle Luis M. Sánchez-Ruiz
Matilde Legua
Santiago Moll-López
José A. Moraño-Fernández
María-Dolores Roselló
The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
Mathematics
complex variable
complex exponential
complex logarithm
complex power of a complex number
title The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
title_full The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
title_fullStr The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
title_full_unstemmed The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
title_short The Exponential Versus the Complex Power <i>e<sup>z</sup></i> Function Revisited
title_sort exponential versus the complex power i e sup z sup i function revisited
topic complex variable
complex exponential
complex logarithm
complex power of a complex number
url https://www.mdpi.com/2227-7390/13/8/1306
work_keys_str_mv AT luismsanchezruiz theexponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT matildelegua theexponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT santiagomolllopez theexponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT joseamoranofernandez theexponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT mariadoloresrosello theexponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT luismsanchezruiz exponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT matildelegua exponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT santiagomolllopez exponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT joseamoranofernandez exponentialversusthecomplexpoweriesupzsupifunctionrevisited
AT mariadoloresrosello exponentialversusthecomplexpoweriesupzsupifunctionrevisited