Relative Contribution of the Topographic Influence on the Triangle Approach for Evapotranspiration Estimation over Mountainous Areas

Evapotranspiration (ET) is an important component of the water budget. Estimation ET through remote sensing over a mountainous terrain is typically obstructed by topographic effects. In this paper, topographic corrections were applied to ET estimates using the surface-air temperature difference-Norm...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaosong Zhao, Yuanbo Liu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2014/584040
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evapotranspiration (ET) is an important component of the water budget. Estimation ET through remote sensing over a mountainous terrain is typically obstructed by topographic effects. In this paper, topographic corrections were applied to ET estimates using the surface-air temperature difference-Normalized Difference Vegetation Index ((Ts-Ta)-NDVI) triangle method with MODIS data for the Taihu Basin in China. The effect of topography on ET was evaluated over an area with a complex terrain. After applying the topographic correction, the results indicate that the ET decreased with elevation and slope. The slope had a stronger impact on ET than the elevation, which caused the corrected ET to decrease by 90% from 6.8 mm day−1 to 0.6 mm day−1 for slopes over 50°. On average, the corrected ET decreased by 10.4% and 32.1% for north- and south-facing slopes, respectively. The ET corrected using the triangle method strongly depended on the evaporative fraction correction, which can mainly be attributed to the surface temperature correction. We conclude that a topographic correction is necessary when the triangle method is applied to areas with a complex terrain.
ISSN:1687-9309
1687-9317