The Development of a Kinetic Model for Biochar Gasification with CO<sub>2</sub>: Comparison Between a Thermogravimetric Analyzer and a Fluidized Bed Reactor

This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO<sub>2</sub>...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis Reyes, Michael Jabbour, Lokmane Abdelouahed, Bechara Taouk
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Fuels
Subjects:
Online Access:https://www.mdpi.com/2673-3994/6/2/34
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO<sub>2</sub> partial pressure (0.33–1 atm), temperature (800–1000 °C), and CO<sub>2</sub>/C ratio (3.5–10.5). Three structural models, the shrinking core model (SCM), volumetric model (VM), and power-law model (PLM), were evaluated for their ability to predict experimental results. The results demonstrated that increasing the temperature, CO<sub>2</sub> partial pressure, and CO<sub>2</sub>/C ratio enhanced the gasification rate, reducing the time required for complete biochar conversion. The apparent activation energy for both reactors was similar (156–159 MJ/kmol), with reaction orders of 0.4–0.49. However, the kinetic models varied significantly between setups. In the TGA, the PLM provided the best fit to experimental data, with standard deviations of 2.6–9%, while in the FBR, the SCM was most accurate, yielding an average deviation of 1.5%. The SCM effectively described the layer-by-layer char consumption, where gasification slowed at high conversion levels. Conversely, the PLM for the TGA revealed a unique mathematical function not aligned with traditional models, indicating localized reaction behaviors. This study highlights the inability to directly extrapolate TGA-derived kinetic models to FBR systems, underscoring the distinct mechanisms governing char consumption in each reactor type. These findings provide critical insights for optimizing biochar gasification across diverse reactor configurations.
ISSN:2673-3994