Existence and Multiplicity of Solutions for a Class of Anisotropic Double Phase Problems

We consider the following double phase problem with variable exponents: −div∇upx−2∇u+ax∇uqx−2∇u=λfx,u in Ω,u=0, on ∂Ω. By using the mountain pass theorem, we get the existence results of weak solutions for the aforementioned problem under some assumptions. Moreover, infinitely many pairs of solution...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Yang, Haibo Chen, Senli Liu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/8237492
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the following double phase problem with variable exponents: −div∇upx−2∇u+ax∇uqx−2∇u=λfx,u in Ω,u=0, on ∂Ω. By using the mountain pass theorem, we get the existence results of weak solutions for the aforementioned problem under some assumptions. Moreover, infinitely many pairs of solutions are provided by applying the Fountain Theorem, Dual Fountain Theorem, and Krasnoselskii’s genus theory.
ISSN:1687-9120
1687-9139