Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Solange Amorim Nogueira, Fernanda Ambrogi B Luz, Thiago Fellipe O Camargo, Julio Cesar S Oliveira, Guilherme Carvalho Campos Neto, Felipe Brazao F Carvalhaes, Marcio Rodrigues C Reis, Paulo Victor Santos, Giovanna Souza Mendes, Rafael Maffei Loureiro, Daniel Tornieri, Viviane M Gomes Pacheco, Antonio Paulo Coimbra, Wesley Pacheco Calixto
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0312257
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832540240900784128
author Solange Amorim Nogueira
Fernanda Ambrogi B Luz
Thiago Fellipe O Camargo
Julio Cesar S Oliveira
Guilherme Carvalho Campos Neto
Felipe Brazao F Carvalhaes
Marcio Rodrigues C Reis
Paulo Victor Santos
Giovanna Souza Mendes
Rafael Maffei Loureiro
Daniel Tornieri
Viviane M Gomes Pacheco
Antonio Paulo Coimbra
Wesley Pacheco Calixto
author_facet Solange Amorim Nogueira
Fernanda Ambrogi B Luz
Thiago Fellipe O Camargo
Julio Cesar S Oliveira
Guilherme Carvalho Campos Neto
Felipe Brazao F Carvalhaes
Marcio Rodrigues C Reis
Paulo Victor Santos
Giovanna Souza Mendes
Rafael Maffei Loureiro
Daniel Tornieri
Viviane M Gomes Pacheco
Antonio Paulo Coimbra
Wesley Pacheco Calixto
author_sort Solange Amorim Nogueira
collection DOAJ
description This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images. The results demonstrate the efficiency of the proposed artificial intelligence model, with a Dice coefficient of 87% and an average Intersection over Union of 0.8, reflecting high agreement with the manual segmentations produced by experts and surpassing traditional interpretation methods. The internal and external validation of the model corroborates its future applicability in real clinical scenarios, offering a new perspective in the analysis of myocardial perfusion scintigraphy images. The integration of artificial intelligence into the process of analyzing myocardial perfusion scintigraphy images represents a significant advancement in diagnostic accuracy, promoting substantial improvements in the interpretation of medical images, and establishing a foundation for future research and clinical applications, such as artifact correction.
format Article
id doaj-art-3b04ade690ac4813b3810ccd0dd0f475
institution Kabale University
issn 1932-6203
language English
publishDate 2025-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-3b04ade690ac4813b3810ccd0dd0f4752025-02-05T05:31:15ZengPublic Library of Science (PLoS)PLoS ONE1932-62032025-01-01201e031225710.1371/journal.pone.0312257Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.Solange Amorim NogueiraFernanda Ambrogi B LuzThiago Fellipe O CamargoJulio Cesar S OliveiraGuilherme Carvalho Campos NetoFelipe Brazao F CarvalhaesMarcio Rodrigues C ReisPaulo Victor SantosGiovanna Souza MendesRafael Maffei LoureiroDaniel TornieriViviane M Gomes PachecoAntonio Paulo CoimbraWesley Pacheco CalixtoThis paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images. The results demonstrate the efficiency of the proposed artificial intelligence model, with a Dice coefficient of 87% and an average Intersection over Union of 0.8, reflecting high agreement with the manual segmentations produced by experts and surpassing traditional interpretation methods. The internal and external validation of the model corroborates its future applicability in real clinical scenarios, offering a new perspective in the analysis of myocardial perfusion scintigraphy images. The integration of artificial intelligence into the process of analyzing myocardial perfusion scintigraphy images represents a significant advancement in diagnostic accuracy, promoting substantial improvements in the interpretation of medical images, and establishing a foundation for future research and clinical applications, such as artifact correction.https://doi.org/10.1371/journal.pone.0312257
spellingShingle Solange Amorim Nogueira
Fernanda Ambrogi B Luz
Thiago Fellipe O Camargo
Julio Cesar S Oliveira
Guilherme Carvalho Campos Neto
Felipe Brazao F Carvalhaes
Marcio Rodrigues C Reis
Paulo Victor Santos
Giovanna Souza Mendes
Rafael Maffei Loureiro
Daniel Tornieri
Viviane M Gomes Pacheco
Antonio Paulo Coimbra
Wesley Pacheco Calixto
Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
PLoS ONE
title Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
title_full Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
title_fullStr Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
title_full_unstemmed Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
title_short Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.
title_sort artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images pilot study
url https://doi.org/10.1371/journal.pone.0312257
work_keys_str_mv AT solangeamorimnogueira artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT fernandaambrogibluz artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT thiagofellipeocamargo artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT juliocesarsoliveira artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT guilhermecarvalhocamposneto artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT felipebrazaofcarvalhaes artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT marciorodriguescreis artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT paulovictorsantos artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT giovannasouzamendes artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT rafaelmaffeiloureiro artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT danieltornieri artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT vivianemgomespacheco artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT antoniopaulocoimbra artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy
AT wesleypachecocalixto artificialintelligenceappliedinidentifyingleftventricularwallsinmyocardialperfusionscintigraphyimagespilotstudy