Upper-bound estimates for weighted sums satisfying Cramer’s condition
Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second o...
Saved in:
Main Authors: | Vydas Čekanavičius, Aistė Elijio |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2023-09-01
|
Series: | Lietuvos Matematikos Rinkinys |
Subjects: | |
Online Access: | https://www.zurnalai.vu.lt/LMR/article/view/30784 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
On convergence of the accumulated insurance claim processes to the compound Poisson process
by: Rimas Banys
Published: (2005-12-01) -
Julius Kruopis – the pioneer of applied statistics in Lithuania
by: Vilijandas Bagdonavičius, et al.
Published: (2023-12-01) -
A Note On the Estimation of the Poisson Parameter
by: S. S. Chitgopekar
Published: (1985-01-01) -
Quasiendozentrische Komposita – gibt es Platz fur einen neuen Typ?
by: Andrzej Szubert
Published: (2025-02-01) -
A new two-parameter family of discrete distributions
by: Allaeddine Haddari, et al.
Published: (2025-02-01)