MSDP-Net: A Multi-Scale Domain Perception Network for HRRP Target Recognition

High-resolution range profile (HRRP) recognition serves as a foundational task in radar automatic target recognition (RATR), enabling robust classification under all-day and all-weather conditions. However, existing approaches often struggle to simultaneously capture the multi-scale spatial dependen...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongxu Li, Xiaodi Li, Zihan Xu, Xinfei Jin, Fulin Su
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2601
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-resolution range profile (HRRP) recognition serves as a foundational task in radar automatic target recognition (RATR), enabling robust classification under all-day and all-weather conditions. However, existing approaches often struggle to simultaneously capture the multi-scale spatial dependencies and global spectral relationships inherent in HRRP signals, limiting their effectiveness in complex scenarios. To address these limitations, we propose a novel multi-scale domain perception network tailored for HRRP-based target recognition, called MSDP-Net. MSDP-Net introduces a hybrid spatial–spectral representation learning strategy through a multiple-domain perception HRRP (DP-HRRP) encoder, which integrates multi-head convolutions to extract spatial features across diverse receptive fields, and frequency-aware filtering to enhance critical spectral components. To further enhance feature fusion, we design a hierarchical scale fusion (HSF) branch that employs stacked semantically enhanced scale fusion (SESF) blocks to progressively aggregate information from fine to coarse scales in a bottom-up manner. This architecture enables MSDP-Net to effectively model complex scattering patterns and aspect-dependent variations. Extensive experiments on both simulated and measured datasets demonstrate the superiority of MSDP-Net, achieving 80.75% accuracy on the simulated dataset and 94.42% on the measured dataset, highlighting its robustness and practical applicability.
ISSN:2072-4292