Strategies for in Silico Drug Discovery to Modulate Macromolecular Interactions Altered by Mutations

Most human diseases have genetic components, frequently single nucleotide variants (SNVs), which alter the wild type characteristics of macromolecules and their interactions. A straightforward approach for correcting such SNVs-related alterations is to seek small molecules, potential drugs, that can...

Full description

Saved in:
Bibliographic Details
Main Authors: Pitambar Poudel, Maria A. Miteva, Emil Alexov
Format: Article
Language:English
Published: IMR Press 2025-04-01
Series:Frontiers in Bioscience-Landmark
Subjects:
Online Access:https://www.imrpress.com/journal/FBL/30/4/10.31083/FBL26339
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most human diseases have genetic components, frequently single nucleotide variants (SNVs), which alter the wild type characteristics of macromolecules and their interactions. A straightforward approach for correcting such SNVs-related alterations is to seek small molecules, potential drugs, that can eliminate disease-causing effects. Certain disorders are caused by altered protein-protein interactions, for example, Snyder-Robinson syndrome, the therapy for which focuses on the development of small molecules that restore the wild type homodimerization of spermine synthase. Other disorders originate from altered protein-nucleic acid interactions, as in the case of cancer; in these cases, the elimination of disease-causing effects requires small molecules that eliminate the effect of mutation and restore wild type p53-DNA affinity. Overall, especially for complex diseases, pathogenic mutations frequently alter macromolecular interactions. This effect can be direct, i.e., the alteration of wild type affinity and specificity, or indirect via alterations in the concentration of the binding partners. Here, we outline progress made in methods and strategies to computationally identify small molecules capable of altering macromolecular interactions in a desired manner, reducing or increasing the binding affinity, and eliminating the disease-causing effect. When applicable, we provide examples of the outlined general strategy. Successful cases are presented at the end of the work.
ISSN:2768-6701