Multi-Party Controlled Semi-Quantum Dialogue Protocol Based on Hyperentangled Bell States

To solve the fundamental problem of excessive consumption of classical resources and the simultaneous security vulnerabilities in semi-quantum dialogue systems, a multi-party controlled semi-quantum dialogue protocol based on hyperentangled Bell states is proposed. A single controlling party is vuln...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng-Na Zhao, Ri-Gui Zhou, Yun-Hao Feng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/666
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To solve the fundamental problem of excessive consumption of classical resources and the simultaneous security vulnerabilities in semi-quantum dialogue systems, a multi-party controlled semi-quantum dialogue protocol based on hyperentangled Bell states is proposed. A single controlling party is vulnerable to information compromise due to tampering or betrayal; the multi-party controlled mechanism (Charlie<sub>1</sub> to Charlie<sub>n</sub>) in this protocol establishes a distributed trust model. It mandates collective authorization from all controlling parties, significantly enhancing its robust resilience against untrustworthy controllers or collusion attacks. The classical participant Bob uses an adaptive Huffman compression algorithm to provide a framework for information transmission. This encoding mechanism assigns values to each character by constructing a Huffman tree, generating optimal prefix codes that significantly optimize the storage space complexity for the classical participant. By integrating the “immediate measurement and transmission” mechanism into the multi-party controlled semi-quantum dialogue protocol and coupling it with Huffman compression coding technology, this framework enables classical parties to execute encoding and decoding operations. The security of this protocol is rigorously proven through information-theoretic analysis and shows that it is resistant to common attacks. Furthermore, even in the presence of malicious controlling parties, this protocol robustly safeguards secret information against theft. The efficiency analysis shows that the proposed protocol provides benefits such as high communication efficiency and lower resource consumption for classical participants.
ISSN:1099-4300