Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics

In this paper, we study self-normalized moderate deviations for degenerate <i>U</i>-statistics of order 2. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub>...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Ge, Hailin Sang, Qi-Man Shao
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/41
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588542511939584
author Lin Ge
Hailin Sang
Qi-Man Shao
author_facet Lin Ge
Hailin Sang
Qi-Man Shao
author_sort Lin Ge
collection DOAJ
description In this paper, we study self-normalized moderate deviations for degenerate <i>U</i>-statistics of order 2. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>X</mi><mi>i</mi></msub><mo>,</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> be i.i.d. random variables and consider symmetric and degenerate kernel functions in the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>λ</mi><mi>l</mi></msub><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>l</mi></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is in the domain of attraction of a normal law for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>l</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Under the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>λ</mi><mi>l</mi></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and some truncated conditions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>:</mo><mi>l</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula>, we show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>log</mi><mi>P</mi><mrow><mo>(</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><msub><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mi>h</mi><mrow><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>,</mo><msub><mi>X</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>l</mi><mo><</mo><mo>∞</mo></mrow></msub><msub><mi>λ</mi><mi>l</mi></msub><msubsup><mi>V</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow><mn>2</mn></msubsup></mrow></mfrac></mstyle><mo>≥</mo><msubsup><mi>x</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mo>∼</mo><mo>−</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msubsup><mi>x</mi><mi>n</mi><mn>2</mn></msubsup><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>→</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>V</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>g</mi><mi>l</mi><mn>2</mn></msubsup><mrow><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. As application, a law of the iterated logarithm is also obtained.
format Article
id doaj-art-39eebc8432cb4b389afc70f96a66cdd6
institution Kabale University
issn 1099-4300
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-39eebc8432cb4b389afc70f96a66cdd62025-01-24T13:31:46ZengMDPI AGEntropy1099-43002025-01-012714110.3390/e27010041Self-Normalized Moderate Deviations for Degenerate <i>U</i>-StatisticsLin Ge0Hailin Sang1Qi-Man Shao2Division of Arts and Sciences, Mississippi State University at Meridian, Meridian, MS 39307, USADepartment of Mathematics, University of Mississippi, University, MS 38677, USADepartment of Statistics and Data Science, Shenzhen International Center for Mathematics, Southern University of Science and Technology, Shenzhen 518055, ChinaIn this paper, we study self-normalized moderate deviations for degenerate <i>U</i>-statistics of order 2. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>X</mi><mi>i</mi></msub><mo>,</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> be i.i.d. random variables and consider symmetric and degenerate kernel functions in the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>λ</mi><mi>l</mi></msub><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>l</mi></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is in the domain of attraction of a normal law for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>l</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Under the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>λ</mi><mi>l</mi></msub><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and some truncated conditions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>g</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>:</mo><mi>l</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula>, we show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>log</mi><mi>P</mi><mrow><mo>(</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><msub><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mi>h</mi><mrow><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>,</mo><msub><mi>X</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>l</mi><mo><</mo><mo>∞</mo></mrow></msub><msub><mi>λ</mi><mi>l</mi></msub><msubsup><mi>V</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow><mn>2</mn></msubsup></mrow></mfrac></mstyle><mo>≥</mo><msubsup><mi>x</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mo>∼</mo><mo>−</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msubsup><mi>x</mi><mi>n</mi><mn>2</mn></msubsup><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>→</mo><mo>∞</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msqrt><mi>n</mi></msqrt><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>V</mi><mrow><mi>n</mi><mo>,</mo><mi>l</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>g</mi><mi>l</mi><mn>2</mn></msubsup><mrow><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. As application, a law of the iterated logarithm is also obtained.https://www.mdpi.com/1099-4300/27/1/41moderate deviationdegenerate <i>U</i>-statisticslaw of the iterated logarithmself-normalization
spellingShingle Lin Ge
Hailin Sang
Qi-Man Shao
Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
Entropy
moderate deviation
degenerate <i>U</i>-statistics
law of the iterated logarithm
self-normalization
title Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
title_full Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
title_fullStr Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
title_full_unstemmed Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
title_short Self-Normalized Moderate Deviations for Degenerate <i>U</i>-Statistics
title_sort self normalized moderate deviations for degenerate i u i statistics
topic moderate deviation
degenerate <i>U</i>-statistics
law of the iterated logarithm
self-normalization
url https://www.mdpi.com/1099-4300/27/1/41
work_keys_str_mv AT linge selfnormalizedmoderatedeviationsfordegenerateiuistatistics
AT hailinsang selfnormalizedmoderatedeviationsfordegenerateiuistatistics
AT qimanshao selfnormalizedmoderatedeviationsfordegenerateiuistatistics