Mesoporous Silica Loaded with Molybdenum Phosphide Nanoparticles for Hydrogen Evolution

A mesoporous silica loaded with molybdenum phosphide nanoparticles (MoP@MSN) was synthesized using Pluronic F-127 as a hard template. Using the method of XRD and HRTEM, the crystallinity, the phase structure, and the morphologies of the MoP@MSN were investigated. The results showed that the MoP@MSN...

Full description

Saved in:
Bibliographic Details
Main Authors: Keliang Wang, Chan Jiang, Zhouyang Chen, Shaojie Ma
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/2940601
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mesoporous silica loaded with molybdenum phosphide nanoparticles (MoP@MSN) was synthesized using Pluronic F-127 as a hard template. Using the method of XRD and HRTEM, the crystallinity, the phase structure, and the morphologies of the MoP@MSN were investigated. The results showed that the MoP@MSN were composed of nanoflakes with approximately 100 nm. Through the linear sweep voltammetry (LSV), the Tafel slopes of 100 and 341 mV were yielded for MoP@MSN and pure MoP, respectively, meaning that the composite of MSN can significantly improve the conductivity of the products. Meanwhile, the mesoporous MoP@MSN presented excellent electrochemical activity and stability toward hydrogen evolution compared with those of bulk MoP nanoparticles, showing a promising prospect in hydrogen production.
ISSN:1687-8434
1687-8442