Assessing the Air Quality Impact of Train Operation at Tokyo Metro Shibuya Station from Portable Sensor Data

Air pollution remains a critical global health concern, with 91% of the world’s population exposed to air quality exceeding World Health Organization (WHO) standards and indoor pollution causing approximately 3.8 million deaths annually due to incomplete fuel combustion. Subways, as major public tra...

Full description

Saved in:
Bibliographic Details
Main Authors: Deepanshu Agarwal, Xuan Truong Trinh, Wataru Takeuchi
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/2/235
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air pollution remains a critical global health concern, with 91% of the world’s population exposed to air quality exceeding World Health Organization (WHO) standards and indoor pollution causing approximately 3.8 million deaths annually due to incomplete fuel combustion. Subways, as major public transportation modes in densely populated cities, can exhibit fine particulate matter (PM) levels that surpass safety limits, even in developed countries. Contributing factors include station location, ambient air quality, train frequency, ventilation efficiency, braking systems, tunnel structure, and electrical components. While elevated PM levels in underground platforms are recognized, the vertical and horizontal variations within stations are not well understood. This study examines the vertical and horizontal distribution of PM2.5 and PM10 levels at Shibuya Station, a structurally complex hub in the Tokyo Subway System. Portable sensors were employed to measure PM concentrations across different platform levels—both above and underground—and at various locations along the platforms. The results indicate that above-ground platforms have significantly lower PM2.5 and PM10 levels compared to underground platforms (17.09 μg/m<sup>3</sup> vs. 22.73 μg/m<sup>3</sup> for PM2.5; 39.54 μg/m<sup>3</sup> vs. 56.98 μg/m<sup>3</sup> for PM10). Notably, the highest pollution levels were found not at the deepest platform but at the one with the least effective ventilation. On the same platform, PM levels varied by up to 63.72% for PM2.5 and 120.23% for PM10, with elevated concentrations near the platform extremities compared to central areas. These findings suggest that ventilation efficiency plays a more significant role than elevation in vertical PM variation, while horizontal differences are likely influenced by piston effects from moving trains. This study underscores the risk of exposure to unsafe PM2.5 levels in underground platforms, particularly at platform extremities, highlighting the need for improved ventilation strategies to enhance air quality in subway environments.
ISSN:2072-4292