Hierarchical luminescence center coupling enables time-dependent phosphorescence color from self-protective carbonized polymer dots
Abstract Time-dependent phosphorescence color is attractive for various applications; however, the modulation mechanism of multiple luminescence centers is still confused. Herein, we proposed a hierarchical luminescence center coupling strategy to develop self-protective xylan carbonized polymer dot...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62807-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Time-dependent phosphorescence color is attractive for various applications; however, the modulation mechanism of multiple luminescence centers is still confused. Herein, we proposed a hierarchical luminescence center coupling strategy to develop self-protective xylan carbonized polymer dots with time-dependent phosphorescence color. When using 1,3-diaminopropane as the cross-linker, the polymer dots feature a highly stable and rigid architecture, the clusterization-triggered phosphorescence of which is fully exploited to form hierarchical core−shell phosphorescence centers with different afterglow colors. The core with blue afterglow is dominant at first, and the shell with yellow-green afterglow becomes dominant over time, leading to a typical time-dependent phosphorescence color evolution with large color contrast. The eco-friendly xylan carbonized polymer dots with high contrast time-dependent phosphorescence color can be used for advanced dynamic information encryption and anti-counterfeiting. This work provides an effective method to achieve time-dependent phosphorescence color, and gives insights into the phosphorescence mechanism of carbonized polymer dots. |
|---|---|
| ISSN: | 2041-1723 |