Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro
Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and respons...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Mediators of Inflammation |
Online Access: | http://dx.doi.org/10.1155/2017/3427461 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562797981990912 |
---|---|
author | Imran H. Chowdhury Hema P. Narra Abha Sahni Kamil Khanipov Casey L. C. Schroeder Jignesh Patel Yuriy Fofanov Sanjeev K. Sahni |
author_facet | Imran H. Chowdhury Hema P. Narra Abha Sahni Kamil Khanipov Casey L. C. Schroeder Jignesh Patel Yuriy Fofanov Sanjeev K. Sahni |
author_sort | Imran H. Chowdhury |
collection | DOAJ |
description | Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock. |
format | Article |
id | doaj-art-3882783a6947484a82a9b866830adc8a |
institution | Kabale University |
issn | 0962-9351 1466-1861 |
language | English |
publishDate | 2017-01-01 |
publisher | Wiley |
record_format | Article |
series | Mediators of Inflammation |
spelling | doaj-art-3882783a6947484a82a9b866830adc8a2025-02-03T01:21:47ZengWileyMediators of Inflammation0962-93511466-18612017-01-01201710.1155/2017/34274613427461Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In VitroImran H. Chowdhury0Hema P. Narra1Abha Sahni2Kamil Khanipov3Casey L. C. Schroeder4Jignesh Patel5Yuriy Fofanov6Sanjeev K. Sahni7Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USADepartment of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USADepartment of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USADepartment of Pharmacology, University of Texas Medical Branch, Galveston, TX, USADepartment of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USADepartment of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USADepartment of Pharmacology, University of Texas Medical Branch, Galveston, TX, USADepartment of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USAEndothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock.http://dx.doi.org/10.1155/2017/3427461 |
spellingShingle | Imran H. Chowdhury Hema P. Narra Abha Sahni Kamil Khanipov Casey L. C. Schroeder Jignesh Patel Yuriy Fofanov Sanjeev K. Sahni Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro Mediators of Inflammation |
title | Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro |
title_full | Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro |
title_fullStr | Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro |
title_full_unstemmed | Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro |
title_short | Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro |
title_sort | expression profiling of long noncoding rna splice variants in human microvascular endothelial cells lipopolysaccharide effects in vitro |
url | http://dx.doi.org/10.1155/2017/3427461 |
work_keys_str_mv | AT imranhchowdhury expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT hemapnarra expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT abhasahni expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT kamilkhanipov expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT caseylcschroeder expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT jigneshpatel expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT yuriyfofanov expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro AT sanjeevksahni expressionprofilingoflongnoncodingrnasplicevariantsinhumanmicrovascularendothelialcellslipopolysaccharideeffectsinvitro |