∗-Ricci Tensor on α-Cosymplectic Manifolds

In this paper, we study α-cosymplectic manifold M admitting ∗-Ricci tensor. First, it is shown that a ∗-Ricci semisymmetric manifold M is ∗-Ricci flat and a ϕ-conformally flat manifold M is an η-Einstein manifold. Furthermore, the ∗-Weyl curvature tensor W∗ on M has been considered. Particularly, we...

Full description

Saved in:
Bibliographic Details
Main Authors: M. R. Amruthalakshmi, D. G. Prakasha, Nasser Bin Turki, Inan Unal
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2022/7939654
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study α-cosymplectic manifold M admitting ∗-Ricci tensor. First, it is shown that a ∗-Ricci semisymmetric manifold M is ∗-Ricci flat and a ϕ-conformally flat manifold M is an η-Einstein manifold. Furthermore, the ∗-Weyl curvature tensor W∗ on M has been considered. Particularly, we show that a manifold M with vanishing ∗-Weyl curvature tensor is a weak ϕ-Einstein and a manifold M fulfilling the condition RE1,E2⋅W∗=0 is η-Einstein manifold. Finally, we give a characterization for α-cosymplectic manifold M admitting ∗-Ricci soliton given as to be nearly quasi-Einstein. Also, some consequences for three-dimensional cosymplectic manifolds admitting ∗-Ricci soliton and almost ∗-Ricci soliton are drawn.
ISSN:1687-9139