Wavelet analysis on a Boehmian space

We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties.

Saved in:
Bibliographic Details
Main Author: R. Roopkumar
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203205184
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567577888423936
author R. Roopkumar
author_facet R. Roopkumar
author_sort R. Roopkumar
collection DOAJ
description We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties.
format Article
id doaj-art-37f5eedce00c4c44be97a4e2faedb7be
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-37f5eedce00c4c44be97a4e2faedb7be2025-02-03T01:01:05ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-0120031591792610.1155/S0161171203205184Wavelet analysis on a Boehmian spaceR. Roopkumar0School of Mathematics, Madurai Kamaraj University, Madurai 625021, IndiaWe extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties.http://dx.doi.org/10.1155/S0161171203205184
spellingShingle R. Roopkumar
Wavelet analysis on a Boehmian space
International Journal of Mathematics and Mathematical Sciences
title Wavelet analysis on a Boehmian space
title_full Wavelet analysis on a Boehmian space
title_fullStr Wavelet analysis on a Boehmian space
title_full_unstemmed Wavelet analysis on a Boehmian space
title_short Wavelet analysis on a Boehmian space
title_sort wavelet analysis on a boehmian space
url http://dx.doi.org/10.1155/S0161171203205184
work_keys_str_mv AT rroopkumar waveletanalysisonaboehmianspace