Scaffold Proteins in Fibrotic Diseases of Visceral Organs

Fibrosis, characterized by excessive extracellular matrix (ECM) deposition, disrupts tissue architecture and impairs organ function, ultimately leading to severe health consequences and even failure of vital organs such as the lung, heart, liver, and kidney. Despite significant advances in understan...

Full description

Saved in:
Bibliographic Details
Main Authors: Piaopiao Sun, Liliang Yang, Keqing Yu, Jing Wang, Jie Chao
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/3/420
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fibrosis, characterized by excessive extracellular matrix (ECM) deposition, disrupts tissue architecture and impairs organ function, ultimately leading to severe health consequences and even failure of vital organs such as the lung, heart, liver, and kidney. Despite significant advances in understanding the molecular mechanisms underlying fibrosis, effective therapeutic options remain limited. Emerging evidence highlights scaffold proteins as critical regulators in the progression of fibrosis. These multifunctional proteins serve as molecular platforms that organize and coordinate key signaling pathways—including those governing ECM remodeling, cytoskeletal organization, and cell migration—thereby integrating both profibrotic and antifibrotic signals. Their pivotal role in linking mechanotransduction, inflammatory, and developmental signals offers a unique therapeutic window, as targeted interventions (e.g., small-molecule inhibitors, peptides, biologics, and gene therapy) are emerging to modulate these pathways. This review synthesizes recent findings on scaffold protein functions across multiple organs and discusses novel therapeutic strategies to manage and potentially reverse fibrosis.
ISSN:2218-273X