Integrating Machine Learning for Predictive Maintenance on Resource-Constrained PLCs: A Feasibility Study

This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data direct...

Full description

Saved in:
Bibliographic Details
Main Authors: Riccardo Mennilli, Luigi Mazza, Andrea Mura
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/537
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure. This approach minimizes latency, enhances data security, and reduces the bandwidth required for data transmission, making it ideal for industrial applications that demand immediate response times. Despite the limited memory and processing power inherent to many edge devices, this proof-of-concept demonstrates the suitability of the Finder Opta™ for such applications. Using acoustic data, a convolutional neural network (CNN) is deployed to infer the rotational speed of a mechanical test bench. The findings underscore the potential of the Finder Opta™ to support scalable and efficient predictive maintenance solutions, laying the groundwork for future research in real-time anomaly detection. By enabling machine learning capabilities on compact, resource-constrained hardware, this approach promises a cost-effective, adaptable solution for diverse industrial environments.
ISSN:1424-8220