Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture i...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudia Siqueira da Silveira, Antonio Carlos Marques Alvim, Jose de Jesus Rivero Oliva
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2013/827961
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.
ISSN:1687-6075
1687-6083