Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain

We investigate a boundary value problem for a nonlinear evolution biharmonic operator motivated by flexion of fully clamped beam in two different physical situations. In the first, the supports of the ends of the beam are fixed and in the second one, the supports of the ends of the beam have small d...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Límaco, H. R. Clark, L. A. Medeiros
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203206347
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545495330848768
author J. Límaco
H. R. Clark
L. A. Medeiros
author_facet J. Límaco
H. R. Clark
L. A. Medeiros
author_sort J. Límaco
collection DOAJ
description We investigate a boundary value problem for a nonlinear evolution biharmonic operator motivated by flexion of fully clamped beam in two different physical situations. In the first, the supports of the ends of the beam are fixed and in the second one, the supports of the ends of the beam have small displacements.
format Article
id doaj-art-36afe5f153cc4c75826bc655639758a7
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-36afe5f153cc4c75826bc655639758a72025-02-03T07:25:36ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003322035205210.1155/S0161171203206347Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domainJ. Límaco0H. R. Clark1L. A. Medeiros2IM-GMA, Universidade Federal Fluminense, Niteri, RJ, BrazilIM-GMA, Universidade Federal Fluminense, Niteri, RJ, BrazilUniversidade Federal do Rio de Janeiro, IM, Rio de Janeiro, RJ, BrazilWe investigate a boundary value problem for a nonlinear evolution biharmonic operator motivated by flexion of fully clamped beam in two different physical situations. In the first, the supports of the ends of the beam are fixed and in the second one, the supports of the ends of the beam have small displacements.http://dx.doi.org/10.1155/S0161171203206347
spellingShingle J. Límaco
H. R. Clark
L. A. Medeiros
Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
International Journal of Mathematics and Mathematical Sciences
title Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
title_full Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
title_fullStr Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
title_full_unstemmed Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
title_short Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain
title_sort remarks on nonlinear biharmonic evolution equation of kirchhoff type in noncylindrical domain
url http://dx.doi.org/10.1155/S0161171203206347
work_keys_str_mv AT jlimaco remarksonnonlinearbiharmonicevolutionequationofkirchhofftypeinnoncylindricaldomain
AT hrclark remarksonnonlinearbiharmonicevolutionequationofkirchhofftypeinnoncylindricaldomain
AT lamedeiros remarksonnonlinearbiharmonicevolutionequationofkirchhofftypeinnoncylindricaldomain