The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback

The development of neuroprosthetic limbs—robotic devices designed to restore lost limb functions for individuals with limb loss or impairment—has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatos...

Full description

Saved in:
Bibliographic Details
Main Authors: Yucheng Tian, Giacomo Valle, Paul S. Cederna, Stephen W. P. Kemp
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/3/130
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of neuroprosthetic limbs—robotic devices designed to restore lost limb functions for individuals with limb loss or impairment—has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human–machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.
ISSN:2313-7673