On a class of univalent functions

We consider the class of univalent functions f(z)=z+a3z3+a4z4+⋯ analytic in the unit disc and satisfying |(z2f′(z)/f2(z))−1|<1, and show that such functions are starlike if they satisfy |(z2f′(z)/f2(z))−1|<(1/2).

Saved in:
Bibliographic Details
Main Author: Vikramaditya Singh
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171200001824
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564254923816960
author Vikramaditya Singh
author_facet Vikramaditya Singh
author_sort Vikramaditya Singh
collection DOAJ
description We consider the class of univalent functions f(z)=z+a3z3+a4z4+⋯ analytic in the unit disc and satisfying |(z2f′(z)/f2(z))−1|<1, and show that such functions are starlike if they satisfy |(z2f′(z)/f2(z))−1|<(1/2).
format Article
id doaj-art-368647578bf54720881c7ee38cf56367
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-368647578bf54720881c7ee38cf563672025-02-03T01:11:29ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-01231285585710.1155/S0161171200001824On a class of univalent functionsVikramaditya Singh03A/95 Azad Nagar, Kanpur 208002, IndiaWe consider the class of univalent functions f(z)=z+a3z3+a4z4+⋯ analytic in the unit disc and satisfying |(z2f′(z)/f2(z))−1|<1, and show that such functions are starlike if they satisfy |(z2f′(z)/f2(z))−1|<(1/2).http://dx.doi.org/10.1155/S0161171200001824
spellingShingle Vikramaditya Singh
On a class of univalent functions
International Journal of Mathematics and Mathematical Sciences
title On a class of univalent functions
title_full On a class of univalent functions
title_fullStr On a class of univalent functions
title_full_unstemmed On a class of univalent functions
title_short On a class of univalent functions
title_sort on a class of univalent functions
url http://dx.doi.org/10.1155/S0161171200001824
work_keys_str_mv AT vikramadityasingh onaclassofunivalentfunctions