Frontostriatal connectivity dynamically modulates the adaptation to environmental volatility

Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the ord...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuxuan Zhang, Nicholas T. Van Dam, Hui Ai, Pengfei Xu
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811925000291
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.
ISSN:1095-9572