Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes

ABSTRACT Purpose To investigate the impact of clinical and socio‐economic factors on glycaemic control and construct statistical models to predict optimal glycaemic control (OGC) after implementing intermittently scanned continuous glucose monitoring (isCGM) systems. Methods This retrospective study...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Sebastian‐Valles, Jose Alfonso Arranz Martin, Julia Martínez‐Alfonso, Jessica Jiménez‐Díaz, Iñigo Hernando Alday, Victor Navas‐Moreno, Teresa Armenta Joya, Maria del Mar delFandiño García, Gisela Liz Román Gómez, Jon Garai Hierro, Luis Eduardo Lander Lobariñas, Carmen González‐Ávila, Purificación deMartinez de Icaya, Vicente Martínez‐Vizcaíno, Miguel Antonio Sampedro‐Nuñez, Mónica Marazuela
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Endocrinology, Diabetes & Metabolism
Subjects:
Online Access:https://doi.org/10.1002/edm2.70020
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586323518554112
author Fernando Sebastian‐Valles
Jose Alfonso Arranz Martin
Julia Martínez‐Alfonso
Jessica Jiménez‐Díaz
Iñigo Hernando Alday
Victor Navas‐Moreno
Teresa Armenta Joya
Maria del Mar delFandiño García
Gisela Liz Román Gómez
Jon Garai Hierro
Luis Eduardo Lander Lobariñas
Carmen González‐Ávila
Purificación deMartinez de Icaya
Vicente Martínez‐Vizcaíno
Miguel Antonio Sampedro‐Nuñez
Mónica Marazuela
author_facet Fernando Sebastian‐Valles
Jose Alfonso Arranz Martin
Julia Martínez‐Alfonso
Jessica Jiménez‐Díaz
Iñigo Hernando Alday
Victor Navas‐Moreno
Teresa Armenta Joya
Maria del Mar delFandiño García
Gisela Liz Román Gómez
Jon Garai Hierro
Luis Eduardo Lander Lobariñas
Carmen González‐Ávila
Purificación deMartinez de Icaya
Vicente Martínez‐Vizcaíno
Miguel Antonio Sampedro‐Nuñez
Mónica Marazuela
author_sort Fernando Sebastian‐Valles
collection DOAJ
description ABSTRACT Purpose To investigate the impact of clinical and socio‐economic factors on glycaemic control and construct statistical models to predict optimal glycaemic control (OGC) after implementing intermittently scanned continuous glucose monitoring (isCGM) systems. Methods This retrospective study included 1072 type 1 diabetes patients (49.0% female) from three centres using isCGM systems. Clinical data and net income from the census tract were collected for each individual. OGC was defined as time in range > 70%, with time below 70 mg/dL < 4%. The sample was randomly split in two equal parts. Logistic regression models to predict OGC were developed in one of the samples, and the best model was selected using the Akaike information criterion and adjusted for Pearson's and Hosmer–Lemeshow's statistics. Model reliability was assessed via external validation in the second sample and internal validation using bootstrap resampling. Results Out of 2314 models explored, the most effective predictor model included annual net income per person, sex, age, diabetes duration, pre‐isCGM HbA1c, insulin dose/kg, and the interaction between sex and HbA1c. When applied to the validation cohort, this model demonstrated 72.6% specificity, 67.3% sensitivity, and an area under the curve (AUC) of 0.736. The AUC through bootstrap resampling was 0.756. Overall, the model's validity in the external cohort was 80.4%. Conclusions Clinical and socio‐economic factors significantly influence OGC in type 1 diabetes. The application of statistical models offers a reliable means of predicting the likelihood of achieving OGC following isCGM system implementation.
format Article
id doaj-art-35d4fa516c68475489be4b5b6385dac0
institution Kabale University
issn 2398-9238
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Endocrinology, Diabetes & Metabolism
spelling doaj-art-35d4fa516c68475489be4b5b6385dac02025-01-25T18:20:28ZengWileyEndocrinology, Diabetes & Metabolism2398-92382025-01-0181n/an/a10.1002/edm2.70020Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 DiabetesFernando Sebastian‐Valles0Jose Alfonso Arranz Martin1Julia Martínez‐Alfonso2Jessica Jiménez‐Díaz3Iñigo Hernando Alday4Victor Navas‐Moreno5Teresa Armenta Joya6Maria del Mar delFandiño García7Gisela Liz Román Gómez8Jon Garai Hierro9Luis Eduardo Lander Lobariñas10Carmen González‐Ávila11Purificación deMartinez de Icaya12Vicente Martínez‐Vizcaíno13Miguel Antonio Sampedro‐Nuñez14Mónica Marazuela15Universidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainUniversidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainDepartment of Family and Community Medicine Hospital La Princesa/Centro de Salud Daroca Madrid SpainDepartment of Endocrinology and Nutrition Hospital Universitario Severo Ochoa Leganés SpainDepartment of Endocrinology and Nutrition Hospital Universitario Basurto Bilbao SpainUniversidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainUniversidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainDepartment of Endocrinology and Nutrition Hospital Universitario Severo Ochoa Leganés SpainDepartment of Endocrinology and Nutrition Hospital Universitario Severo Ochoa Leganés SpainDepartment of Endocrinology and Nutrition Hospital Universitario Basurto Bilbao SpainDepartment of Endocrinology and Nutrition Hospital Universitario Severo Ochoa Leganés SpainDepartment of Neurology Hospital Universitario Infanta Elena Valdemoro SpainDepartment of Endocrinology and Nutrition Hospital Universitario Severo Ochoa Leganés SpainHealth and Social Care Research Center Universidad de Castilla‐La Mancha Cuenca SpainUniversidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainUniversidad Autónoma de Madrid, Department of Endocrinology and Nutrition Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa Madrid SpainABSTRACT Purpose To investigate the impact of clinical and socio‐economic factors on glycaemic control and construct statistical models to predict optimal glycaemic control (OGC) after implementing intermittently scanned continuous glucose monitoring (isCGM) systems. Methods This retrospective study included 1072 type 1 diabetes patients (49.0% female) from three centres using isCGM systems. Clinical data and net income from the census tract were collected for each individual. OGC was defined as time in range > 70%, with time below 70 mg/dL < 4%. The sample was randomly split in two equal parts. Logistic regression models to predict OGC were developed in one of the samples, and the best model was selected using the Akaike information criterion and adjusted for Pearson's and Hosmer–Lemeshow's statistics. Model reliability was assessed via external validation in the second sample and internal validation using bootstrap resampling. Results Out of 2314 models explored, the most effective predictor model included annual net income per person, sex, age, diabetes duration, pre‐isCGM HbA1c, insulin dose/kg, and the interaction between sex and HbA1c. When applied to the validation cohort, this model demonstrated 72.6% specificity, 67.3% sensitivity, and an area under the curve (AUC) of 0.736. The AUC through bootstrap resampling was 0.756. Overall, the model's validity in the external cohort was 80.4%. Conclusions Clinical and socio‐economic factors significantly influence OGC in type 1 diabetes. The application of statistical models offers a reliable means of predicting the likelihood of achieving OGC following isCGM system implementation.https://doi.org/10.1002/edm2.70020continuous glucose monitoring systemsintermittently scanned continuous glucose monitoringoptimal controlpredictive modelstype 1 diabetes
spellingShingle Fernando Sebastian‐Valles
Jose Alfonso Arranz Martin
Julia Martínez‐Alfonso
Jessica Jiménez‐Díaz
Iñigo Hernando Alday
Victor Navas‐Moreno
Teresa Armenta Joya
Maria del Mar delFandiño García
Gisela Liz Román Gómez
Jon Garai Hierro
Luis Eduardo Lander Lobariñas
Carmen González‐Ávila
Purificación deMartinez de Icaya
Vicente Martínez‐Vizcaíno
Miguel Antonio Sampedro‐Nuñez
Mónica Marazuela
Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
Endocrinology, Diabetes & Metabolism
continuous glucose monitoring systems
intermittently scanned continuous glucose monitoring
optimal control
predictive models
type 1 diabetes
title Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
title_full Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
title_fullStr Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
title_full_unstemmed Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
title_short Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes
title_sort predicting time in range without hypoglycaemia using a risk calculator for intermittently scanned cgm in type 1 diabetes
topic continuous glucose monitoring systems
intermittently scanned continuous glucose monitoring
optimal control
predictive models
type 1 diabetes
url https://doi.org/10.1002/edm2.70020
work_keys_str_mv AT fernandosebastianvalles predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT josealfonsoarranzmartin predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT juliamartinezalfonso predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT jessicajimenezdiaz predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT inigohernandoalday predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT victornavasmoreno predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT teresaarmentajoya predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT mariadelmardelfandinogarcia predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT giselalizromangomez predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT jongaraihierro predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT luiseduardolanderlobarinas predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT carmengonzalezavila predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT purificaciondemartinezdeicaya predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT vicentemartinezvizcaino predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT miguelantoniosampedronunez predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes
AT monicamarazuela predictingtimeinrangewithouthypoglycaemiausingariskcalculatorforintermittentlyscannedcgmintype1diabetes