On periodic rings

It is proved that a ring is periodic if and only if, for any elements x and y, there exist positive integers k,l,m, and n with either k≠m or l≠n, depending on x and y, for which xkyl=xmyn. Necessary and sufficient conditions are established for a ring to be a direct sum of a nil ring and a J-ring....

Full description

Saved in:
Bibliographic Details
Main Authors: Xiankun Du, Qi Yi
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201001181
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567297853620224
author Xiankun Du
Qi Yi
author_facet Xiankun Du
Qi Yi
author_sort Xiankun Du
collection DOAJ
description It is proved that a ring is periodic if and only if, for any elements x and y, there exist positive integers k,l,m, and n with either k≠m or l≠n, depending on x and y, for which xkyl=xmyn. Necessary and sufficient conditions are established for a ring to be a direct sum of a nil ring and a J-ring.
format Article
id doaj-art-357948578ecc43b688e0f0f0d5886c81
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-357948578ecc43b688e0f0f0d5886c812025-02-03T01:01:52ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-0125641742010.1155/S0161171201001181On periodic ringsXiankun Du0Qi Yi1Department of Mathematics, Jilin University, Changchun 130012, ChinaJilin Commercial College, Changchun 130062, ChinaIt is proved that a ring is periodic if and only if, for any elements x and y, there exist positive integers k,l,m, and n with either k≠m or l≠n, depending on x and y, for which xkyl=xmyn. Necessary and sufficient conditions are established for a ring to be a direct sum of a nil ring and a J-ring.http://dx.doi.org/10.1155/S0161171201001181
spellingShingle Xiankun Du
Qi Yi
On periodic rings
International Journal of Mathematics and Mathematical Sciences
title On periodic rings
title_full On periodic rings
title_fullStr On periodic rings
title_full_unstemmed On periodic rings
title_short On periodic rings
title_sort on periodic rings
url http://dx.doi.org/10.1155/S0161171201001181
work_keys_str_mv AT xiankundu onperiodicrings
AT qiyi onperiodicrings