Some results on convergence rates for probabilities of moderate deviations for sums of random variables

Let X, Xn, n≥1 be a sequence of iid real random variables, and Sn=∑k=1nXk, n≥1. Convergence rates of moderate deviations are derived, i.e., the rate of convergence to zero of certain tail probabilities of the partial sums are determined. For example, we obtain equivalent conditions for the convergen...

Full description

Saved in:
Bibliographic Details
Main Authors: Deli Li, Xiangchen Wang, M. Bhaskara Rao
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292000644
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let X, Xn, n≥1 be a sequence of iid real random variables, and Sn=∑k=1nXk, n≥1. Convergence rates of moderate deviations are derived, i.e., the rate of convergence to zero of certain tail probabilities of the partial sums are determined. For example, we obtain equivalent conditions for the convergence of series ∑n≥1(ψ2(n)/n)P(|Sn|≥nφ(n)) only under the assumptions convergence that EX=0 and EX2=1, where φ and ψ are taken from a broad class of functions. These results generalize and improve some recent results of Li (1991) and Gafurov (1982) and some previous work of Davis (1968). For b∈[0,1] and ϵ>0, letλϵ,b=∑n≥3((loglogn)b/n)I(|Sn|≥(2+ϵ)nloglogn).The behaviour of Eλϵ,b as ϵ↓0 is also studied.
ISSN:0161-1712
1687-0425