Research on the Effects of Hydropneumatic Parameters on Tracked Vehicle Ride Safety Based on Cosimulation

Ride safety of a tracked vehicle is the key focus of this research. The factors that affect the ride safety of a vehicle are analyzed and evaluation parameters with their criteria are proposed. A multibody cosimulation approach is used to investigate the effects of hydropneumatic parameters on the r...

Full description

Saved in:
Bibliographic Details
Main Authors: Shousong Han, Zhiqiang Chao, Xiangbo Liu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/1256536
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ride safety of a tracked vehicle is the key focus of this research. The factors that affect the ride safety of a vehicle are analyzed and evaluation parameters with their criteria are proposed. A multibody cosimulation approach is used to investigate the effects of hydropneumatic parameters on the ride safety and aid with design optimization and tuning of the suspension system. Based on the cosimulation environment, the vehicle multibody dynamics (MBD) model and the road model are developed using RecurDyn, which is linked to the hydropneumatic suspension model developed in Lab AMESim. Test verification of a single suspension unit is accomplished and the suspension parameters are implemented within the hydropneumatic model. Virtual tests on a G class road at different speeds are conducted. Effects of the accumulator charge pressure, damping diameter, and the track tensioning pressure on the ride safety are analyzed and quantified. This research shows that low accumulator charge pressure, improper damping diameter, and insufficient track tensioning pressure will deteriorate the ride safety. The results provide useful references for the optimal design and control of the parameters of a hydropneumatic suspension.
ISSN:1070-9622
1875-9203