On the Diophantine equation x3=dy2±q6
Let q>3 denote an odd prime and d a positive integer without any prime factor p≡1(mod3). In this paper, we have proved that if (x,q)=1, then x3=dy2±q6 has exactly two solutions provided q≢±1(mod24).
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2001-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171201006445 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|