<inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection

Hyperspectral anomaly detection (HAD) approaches with tensor low-rank representation (TLRR) have shown engaging performance, which are capable of capturing abundant spectral and spatial information and, hence, extracting sparse anomalies from the low-rank background without ruining the intrinsic geo...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiangqiang Shen, Zonglin Liu, Hanzhang Wang, Yanhui Xu, Yongyong Chen, Yongsheng Liang
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10818590/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590385108484096
author Qiangqiang Shen
Zonglin Liu
Hanzhang Wang
Yanhui Xu
Yongyong Chen
Yongsheng Liang
author_facet Qiangqiang Shen
Zonglin Liu
Hanzhang Wang
Yanhui Xu
Yongyong Chen
Yongsheng Liang
author_sort Qiangqiang Shen
collection DOAJ
description Hyperspectral anomaly detection (HAD) approaches with tensor low-rank representation (TLRR) have shown engaging performance, which are capable of capturing abundant spectral and spatial information and, hence, extracting sparse anomalies from the low-rank background without ruining the intrinsic geometric structures of tensor data. However, existing HAD approaches construct the low-rank representation by a handcrafted dictionary that still contains the anomalies, resulting in an inferior representation. To this end, we propose a deep denoising dictionary tensor for hyperspectral anomaly detection (<inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T), which can balance performance and interpretability by fusing two intuitive priors, i.e., low-rankness and deep denoising, into the dictionary tensor and coefficient tensor. In particular, the proposed <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T first designs a tensor recovery module for dividing the low-rank background and sparse anomalies, where the background is optimized as a denoising dictionary tensor by the joint low-rankness and deep denoising. Following that, we build the TLRR model based on the denoising dictionary tensor to explore the latent representation of the input hyperspectral images, and hence, each background pixel is represented by the other clear background pixels in place of the anomaly pixels. Meanwhile, the coefficient tensor in TLRR is also optimized by the two priors to fully explore the spatial and spectral correlations in the background, and hence, the anomalies can be accurately detected. Numerous experimental results from various real-world datasets validate the effectiveness of our <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T.
format Article
id doaj-art-348b5ac2603f477ea24f2967cb221177
institution Kabale University
issn 1939-1404
2151-1535
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj-art-348b5ac2603f477ea24f2967cb2211772025-01-24T00:00:58ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing1939-14042151-15352025-01-01183713372710.1109/JSTARS.2024.352313310818590<inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly DetectionQiangqiang Shen0https://orcid.org/0000-0002-3564-6042Zonglin Liu1Hanzhang Wang2https://orcid.org/0009-0006-0650-173XYanhui Xu3https://orcid.org/0000-0002-8615-2122Yongyong Chen4https://orcid.org/0000-0003-1970-1993Yongsheng Liang5https://orcid.org/0000-0002-0891-5577School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, ChinaSchool of Science, Harbin Institute of Technology, Shenzhen, ChinaSchool of Science, Harbin Institute of Technology, Shenzhen, ChinaCollege of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, ChinaSchool of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, ChinaCollege of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, ChinaHyperspectral anomaly detection (HAD) approaches with tensor low-rank representation (TLRR) have shown engaging performance, which are capable of capturing abundant spectral and spatial information and, hence, extracting sparse anomalies from the low-rank background without ruining the intrinsic geometric structures of tensor data. However, existing HAD approaches construct the low-rank representation by a handcrafted dictionary that still contains the anomalies, resulting in an inferior representation. To this end, we propose a deep denoising dictionary tensor for hyperspectral anomaly detection (<inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T), which can balance performance and interpretability by fusing two intuitive priors, i.e., low-rankness and deep denoising, into the dictionary tensor and coefficient tensor. In particular, the proposed <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T first designs a tensor recovery module for dividing the low-rank background and sparse anomalies, where the background is optimized as a denoising dictionary tensor by the joint low-rankness and deep denoising. Following that, we build the TLRR model based on the denoising dictionary tensor to explore the latent representation of the input hyperspectral images, and hence, each background pixel is represented by the other clear background pixels in place of the anomaly pixels. Meanwhile, the coefficient tensor in TLRR is also optimized by the two priors to fully explore the spatial and spectral correlations in the background, and hence, the anomalies can be accurately detected. Numerous experimental results from various real-world datasets validate the effectiveness of our <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T.https://ieeexplore.ieee.org/document/10818590/Deep denoisinghyperspectral anomaly detection (HAD)low-rank representation (LRR)low-rank tensor
spellingShingle Qiangqiang Shen
Zonglin Liu
Hanzhang Wang
Yanhui Xu
Yongyong Chen
Yongsheng Liang
<inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Deep denoising
hyperspectral anomaly detection (HAD)
low-rank representation (LRR)
low-rank tensor
title <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
title_full <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
title_fullStr <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
title_full_unstemmed <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
title_short <inline-formula><tex-math notation="LaTeX">$\mathrm{D}^{3}$</tex-math></inline-formula>T: Deep Denoising Dictionary Tensor for Hyperspectral Anomaly Detection
title_sort inline formula tex math notation latex mathrm d 3 tex math inline formula t deep denoising dictionary tensor for hyperspectral anomaly detection
topic Deep denoising
hyperspectral anomaly detection (HAD)
low-rank representation (LRR)
low-rank tensor
url https://ieeexplore.ieee.org/document/10818590/
work_keys_str_mv AT qiangqiangshen inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection
AT zonglinliu inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection
AT hanzhangwang inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection
AT yanhuixu inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection
AT yongyongchen inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection
AT yongshengliang inlineformulatexmathnotationlatexmathrmd3texmathinlineformulatdeepdenoisingdictionarytensorforhyperspectralanomalydetection