Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM

With the construction of a new-type power system under the China “double carbon” target and the increasing diversification of the energy demand on the user side, the short-term load forecasting of the power system is facing new challenges. To fully exploit the massive information contained in data,...

Full description

Saved in:
Bibliographic Details
Main Authors: Houhe Chen, Mingyang Zhu, Xiao Hu, Jiarui Wang, Yong Sun, Jinduo Yang, Baoju Li, Xiangdong Meng
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:International Transactions on Electrical Energy Systems
Online Access:http://dx.doi.org/10.1155/2023/8846554
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the construction of a new-type power system under the China “double carbon” target and the increasing diversification of the energy demand on the user side, the short-term load forecasting of the power system is facing new challenges. To fully exploit the massive information contained in data, based on the graph convolutional network (GCN) and long short-term memory network (LSTM), this paper presents a new short-term load forecasting method for power systems considering multiple factors. The Spearman rank correlation coefficient was used to analyse the correlation between load and meteorological factors, and a model including meteorology, dates, and regions was established. Secondly, GCN and LSTM are jointly used to extract the spatial and temporal characteristics of massive data, respectively, and finally achieve short-term power load prediction. Historical electrical load data from 2020 to 2022 public data of a real industrial park in southern China were selected to verify the validity of the proposed method from the aspects of forecasting accuracy, feature dimension, and training time.
ISSN:2050-7038